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ON ESTIMATION OF A CLASS OF /
EFFICACY-RELATED PARAMETERS

For specified functions ¢ and y and unknown distribution function F

with density £, the efficacy-related parameter T(f) = ].(x)*(r(x))fz(x)dx
may be estimated by the sample analogue estimator 'r(fn) based on an
empirical density estimator f . For {Xi} i.i.d. F and £ of the form

™~ fn(x) = n-l)::_lkn(xi- x), we approximate the estimation error 'r(fn) - T(f)
| by the Giteaux derivative of the functional T(°) at the "point" f with

2 increment fn - f. In conjunction with stochastic properties of the
L,-noru ||f - £]||, this approach leads to characterizations of the

stochastic behavior of T(fn) - T(f). In particular, under mild assump-

tions on f, we obtain the rate of strong convergence 'r(fn) - T(f) .

‘ . o(n*(log n)*) » which significantly improves previous results in the

literature. Also, we establish asymptotic normality with associated

Berry-Esséen rates.
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Key Phrases: Nonparametric estimation; efficacy; functionals of probability
density; strong convergence; asymptotic distribution.
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1. Introduction. In nonparametric inference two statistical procedures
are ofetn compared by their asymptotic relative efficiency (ARE), which
depends on efficacy parameters defined in terms of the underlying pro-
bability distribution of the data. An important such efficacy-related

functional is
1.1 T(E) = [o(x)$(F(x)) £2(x)dx,

where f is the underlying probability density function, F is the corres-
ponding cumulative distribution function (cdf), and ¢ and ¥ are specified
functions. For example, for the case ¢(x) = y(x) = 1, this functional
reduces to [ tz(x)dx. which appears as a factor in the Pitman ARE of var-
ious test comparisons involving as one of the tests the Wilcoxon rank

sum test, or the Wilcoxon signed rank test, or the Kruskal-Wallis test.
Other important special cases of (1.1) are [3[21'(:) - llfz(x)dx.

fx(I(~=, 0] - 1[0, =)}£2(x)dx, and [(d/dx)® 1(P(x))£2(x)dx, where ¢ denotes
the standard normal cdf. Discussion of these and other examples may be
found in Puri and Sem (1971).

Usually little is assumed known about the underlying probability
density f, but some enlightenment may be gained by finding the lower
bound of the ARE over a specified class of densities. It also becomes
of interest to estimate the ARE from the data. In this connection, we
explore in this paper the stochastic behavior of certain estimators of
the functional T(f) defined by (1.1).

For the special case j fz (x)dx, a consistent estimate was produced
by Lehmann (1963) as a byproduct of an investigation using the signed
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rank test to construct a confidence interval for the location shift
parameter, More generally, Sen (1966) proposed estimators for T(f) in
the case that ¢(x) = 1 or ¢(x) = x and ¥(x) = J'(x), where J is a score
function defining a rank test, and established weak consistency and
asymptotic normality of these estimators (under regularity conditions
on f and J).

Bhattacharyya and Roussas (1969) suggested estimation of [f2(x)dx
by jfi (x)dx, where £, 1s a kernel-type empirical probability density func-
tion for estimation of f based on a sample of size n from f, and estab-
lished convergence of this estimator in the first and second means.
Schuster (1974) investigated strong convergence and established the rate
o(n-llalog n). He also introduced the alternative estimator, [ £ (x)dF_(x),
where Fn is the usual empirical cdf, and showed that the two estimators
have the same asymptotic almost sure behavior. Ahmad (1976) established
asymptotic normality for the latter estimator.

Estimation of the general functional (1.1) has been considered by
Ahmad and Lin (1976) and Winter (1978). Winter employs the estimator
(£ n) for T(f), with fn as above, and establishes strong convergence with

rate O(n'll 3

(log n)an) » Where an + o, for the case that ¢ is bounded and
¥ has a bounded derivative.

In the present treatment, we also consider estimation of T(f) by
the sample analogue estimator 'r(tn) » but we allow greater flexibility
in the choice of fn and we employ a different technique for analysis of
T(f). Specifically, we approximate T(f) - T(f) by the Gateaux deriva-
tive of the functional T(:) at the point f with increment fn - £, By

this method we are able to establish significantly improved rates of

strong convergence, namely O(n *(log n)*) and under some conditions
O(n"‘

(log log n)*). the latter probably optimal. The method also yields
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asymptotic normality along with associated Berry-Esséen rates. Fu::?er-

more, we are able to relax the restrictions on ¢ and y imposed by previous
authors.

The basic notation, assumptions and method are presented in Section
2. The special case ¢(x) = y(x) = 1 and f square integrable is treated
in Section 3. In Section 4 direct extensions to the following cases are
discussed: (a) f has bounded support, ¢ is continuous, ¥y has bounded

second derivative; (b) f is square integrable, ¢ is bounded, Yy has bounded

fé second derivative. Section 5 treats the general case, dropping all major
restrictions on f and ¢, but at the expense of making the estimator some-
4 what more complicated. In Section 6 we consider two specific examples
f' of estimators of the simple density functional ffz(x)dx and point out

certain computational approaches.

2. The basic approach. Let (xil be independent random variables

having density function f. Let fn be an empirical density function
based on xl, seey xn, and let i; denote the associated cdf obtained by
integration of fn.

We consider estimation of the functional T(f) defined by (1.1) by
T(fn). Following von Mises (1947), let us approximate the estimation
error r(fn) - T(f) by an appropriaste GAteaux derivative. For an arbi-
trary functional T(*), the Giteaux derivative of T(*) at the point f
with increment g - f, where f and g are "points" in the space of density

functions, is defined as |

(e; g - £) = KA - D +20)], .
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For g sufficiently close to f, T(f; g - f) serves as an approximation to
T(g) - T(f). 1In particular, for T(.) given by (1.1) and for g = fn' we
find

(2.1) T(E; £, - £) = 2[e()V(F)) £(x) [£ (x) - £(x)]dx
+ Jo)v' (RGN £ () [F(x) - #(x) lax,

assuming that ¢y is differentiable.

The usefulness of (2.1) will depend in part on properties of fn.
We shall assume that fn has the form

=]

(A1) £(x) =n 121f“1(x)'
where the i-th function fn 1 depends only on the i-th random variable xi
and on n. For example, this structure includes the kernel type fn ia
which f  1s of the form £ (x) = c;l‘x(c;]'(x - X,)), where K is a speci-

fied "kernel” function and (cn} is a sequence of constants tending to O.

Sometimes we shall assume in addition that

(Az) fni-fii.lsisn’n.].. 2. scey

which makes (f } computable recursively: f, = n '[(a - Df _, +£_].
That is, the n-th stage function depends on xl. seep xn_l only through
the result of the (n - 1)-th stage computation.

A key feature of fn due to (Al) is its structure as an average over
the independent elements of the n-th row of a double array of random

variables. By (2.1), we readily see that this feature applies as well

to the structure of T(f; fn - £):




T
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(2.2) T(f; £, - £) =0 ] TE; £, - D).

i=1

Thus we may handle '1‘(f;f.u - f) by routine application of classical pro-
bability theory for sums. In the recursive case, that is, when (A2)
holds also, there is a further simplication: the problem reduces to
averaging over a single sequence of random variables.

The usefulness of (2.1) will depend also upon negligibility of the
approximation error ‘I‘(fn) - T(f) - T(f; fn - £f). In order to show that this
quantity is op(n'l'), or almost surely (a.s.) O(nq*(log log n)*), or the
like, we shall use the following "differential inequality." Let ||h| |p
denote for 0 < p < ® the Lp-non (“hl")‘l/p and for p = » the sup-norm

sup_|h(x)|.

LEMMA 2.1. Let T be given by (1.1). Assums that either (a) f has
bounded support and ¢ ie oontinuous, or (b) f ie equare integrable and ¢
t8 bounded. Assume that ¥ has bounded eecond derivative. Then

2 ~ 2
(2.3) |T(£) - T(f) - T(F; £ - £| < cyllf, = £]15 + o |IF, - Fll .

where c:]_cmdc:2 are oonstante depending on £, ¢ and ¥ but not on £,
Further, in ocase (s) we may take c, = 0.

The proof is routine and omitted. We will exploit the lemma by assuming that
f and “n} are such that the following conditions hold:

™) n‘k“fn 5 f“: . O

(82) n*||'ifn - 7|2 *. O

it i
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Conditions for (Bl) have been investigated by Cheng and Serfling (1979)
for kernel type fn. Each of the following 1s a sufficient requirement
on f: (1) f possesses a bounded continuous Lz(-O, «) derivative;
(11) £ is Lipschitz on (-=, =) and satisfies a tail restriction of form
flx'>tf(x)dx - 0(:'q). t >+, for some q > 0; (ii1) the characteristic
function of f decreases algebraically of degree p > 0, in the sense
of Parzen (1962) and Watson and Leadbetter (1963). In each case a suitable
choice of kernel K and constants {cn} can be wade so as to achieve (Bl).

Conditions for (B2) follow from work of Winter (1979), who estabiishes
for suitable £, the stronger property nkllfn - Fl], .5, 0((log log n)*),
under the assumption that f possesses a bounded derivative.

It will also be of interest, in connection with Berry-Esc€en rates,

to have f and fn satisfy
¥ - #11e =
(©) P(n llfn fllz > an) O(an),

for a sequence of constants a tending to 0. The work of Cheng and
Serfling noted above also provides (C) under conditions similar to 1),
(11), (111). However, the analogue of (C) for II;h - FIIE has not been
investigated at this point.

In dealing in Section 5 with the general case of T(f) with f and ¢

unrestricted, our estimator will be a truncated version of T(fn). namely
t

SWE () €2
T(E) = Jo)¥(E (x)£ (x)dx,

-t
n

where tn is a sequence of constants tending to . The corresponding

Giateaux derivative of Tn(-) at f with increment tn - f is a similiar

e
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truncation of T(f; fn - f).

Both T(fn) and Tn(fn) are Borel measurable if fn is a kernel type
estimator. In the sequel we assume that 'l‘(fn), 'rn(fn), T(f; fn - f) and
'l'n(f; fn - f) are Borel measurable without further mention.

The following notation will be needed:

-1 %
Mpg = E(TCE £, - O}, u =07 ] u s

i=]1
o2 = Var{T(f; £, - £)}, o> = o} lf g
ni ' "ni il 1-1°n1’

n
Yag ) =EITCE £, - 6) - u |V, v () = "-1121”"1(“)'

3. The cage ¢ = ¥ = 1. In this section the target functional is
siamply T(f) = ffz(x)dx. Under the general assumptions (A), (B), and (C)
on f and fn' discussed in Section 2, we characterize the stochastic be-
havior of 'r(fn). Theorem 1 provides the rate of a.s. convergence. Theo-
rem 2 provides asymptotic normality along with an associated Berry-Esséen
rate. The hypotheses of the theorems will also entail restrictions directly

imposed on the quantities h? oﬁ. yn(v). etc. These conditions will be

further discussed at the conclusion of this section.

THEOREM 1. Let £ and £, satisfy (Al) and (Bl). Assume also that

(3.1) ”fni(x)ldx $C,all 1 and n,

and

(3.2) u, " o(n-*(log n)*). n-+o,

Then

(3.3) (e - 29| =, , 0 ¥(log m¥, n =,

If, aleo, (A2) holds, w, - o(n-*(log log n)*) » and o: -+ cz. 0 02 <w,




T
then
(3.4) Tin i e 1
: nbe (Zczn log log n)‘k .8,
PROOF. By Lemma 2.1 and (Bl), we have
(3.5) nf|T(€) - TE) - TE; £ - ], o.

In view of (3.2), to complete the proof of (3.3) it suffices to show

(3.6) |T(f; fn - £f) - BE{T(f; fn - f)}l s O(n*(los n)*).

By (2.1) and (2.2), represent

-1 8
3.7) T(f; £, - ) =n 1212ff(x)[£n1(x) - £(x)]dx.

By (3.1), the summands in (3.7) are bounded random variables, say bounded

by B. Therefore, by Theorem 2 of Hoeffding (1963), we have
PC|TCE; £, ~ £) - BIN(E £, - D) 2 ¢) s 2 exp(-20¢2/87),

from which (3.6) follows by the Borel-Cantelli lemma.

On the other hand, if fn satisfies (A2), then T(f; fn - £) may be
regarded as the partial sum of independent bounded random variables.
Thus (3.4) follows from (3.5), b = o(n ¥(log log n)¥), and the lew of
the iterated logarithm of Kolmogorov (1929). O

THEOREM 2. Lctfmdtnoamn (Al) and (Bl). Asewme aleo that
(3.8a) v, - o(n").

(3.8b) c: - oz, 0<of < -,




and, for some v > 2,

(3.8¢) nyn(v)/(no:)"" >0,
Then
(3.9) n“[r(fn) - (D)) +, 80, o).

If, also, (C) holds for a sequence {an} 8uch that n'*F 0(a)), and
ay_()/(n02)32 = 0@™), then (for ¢ the standard nowal odf)

(3.10) sup |P¥(T(£) - T(D)) s ©) - 0(B)] = O(a).

PROOF. We use the following well-known device. For any sequences

of random variables {En} and {nn} and sequence of positive constants {an},
supth(E“ s t) -e(e)| s .npt|l’(nn s t) - e(t)| +0Ca) +P(JE - nl ze).

By this inequality and an argument similar to that for Theorem 1, we re-
duce the problem to an application of standard central limit theory for
double arrays. [

As will be seen below, it suffices for (3.8), and thus for (3.2)
also, that f have a bounded second derivative. (Of course, it is under-
stood that £n must be suitably chosen, also.) If, further, f" is a contin-
uous Lz(-, «) function and fn is of suitable kermel type, then (Bl)

-3/10+€), any € > 0. For details on

holds and (C) holds with a - O(n
the latter, see Cheng and Serfling (1979).

We now give conditions on f and fn aufficient for the properties

(3.11) lln - o(n*).
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(3.12) o: +02, 0 < oz < »,
(3.13) yn(.‘!)/n*oz - O(n.*).

We confine attention to fn of kemel type.

LEMMA 3.1. Let f have bounded second derivative. Aseume that both
JeI V(R £(x)dx and [o(x)v' (F(x)) £ (x)dx are finite. Let K satisfy
[eK(2)dz = 0 and [2?|K(2)|dz < =, and suppose c, = 0. Then (3.11)
holds.

LEMMA 3.2. Let f be bounded and continuous, let ¢ be bounded and
continuwous, and let ¥ have bounded derivative. Then oi has finite poei-
tive limt and v, (3) ie bounded.

The proofs are routine and may be found, with related results, in

Cheng (1979).

4. Some direct extensions. Here we indicate extensions of Section 1

in two directions. For the first case we assume

f has bounded support, say in [a, b];
¢ is continuous;

¥ has bounded second derivative.

We also assume that the empirical demsity function fn has support in [a, b]
for large n, which can be arranged by taking ‘n to be of kernel type
with kernel function having bounded support. Under these assumptions,

Theorems 1 and 2 of Section 3 carry over unchanged and by means of similar

proofs.




T

o
PRI b I e

=11 =

Next we assume, alternatively, that

f is square integrable;

¢ is bounded;

¥ has bounded second derivative.
In this case both terms in (2.3) are relevant, so that condition (B2)
comes into action. With appropriate modifications in this respect, again

the assertions of Section 3 carry over.

5. The general case. In this section we simultaneously remove the
conditions on ¢ and drop the restrictions on the support of f. We assume
only that f is square integrable, and we retain the assumption that ¢
has dbounded second derivative. Instead of the estimator T(fn), we employ

the truncated version defined in Section 2, and we introduce the function

H(t ) = sup'xIStnIO(x)l.

The differential inequality of Lemma 2.1 now becomes replaced by
t

n -
IT (£) = 1.(8) - T (£ £ - B s cu(:n)[_{ [£,00 - £ ax + ||E, - ¥]|2).
n

Also, the parameters un, o:, etc. are modified to ﬁn - B(Tn(f; fn - £)},

3': =-n Var('l‘n(t; fu - £)}, etc.

With modifications along these lines, Theorem 1 of Section 2 carries

over to the present situation. Specifically, we add condition (B2) and

¥

replace the condition on L by ﬁ'n = o(nJ’(log n) ll(tn)) , and assert:

(5.1) (e - 1,0 = . ot ¥ (108 m¥uce ).




:
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If there exists a choice of t, such that
G2 ] $ONEFEDE @ax = 0 (og wECe),

then 'rn(f) may be replaced by T(f) in (5.1).
Similarly, by replacing u and % by ;n and ;n and adding condition

(B2) in Theorem 2, the result carries over with the assertion:
¥ ~2

If the left-hand side of (5.2) is o(n*). then Tn(f) may be replaced
by T(f) in (5.3).

6. Examples and computations. In this section we confine attention

to the case T(f) = }'fz(x)dx and consider fn to be of kernel type. Two

choices of kernel K will be considered.

EXAMPLE 1. The wuniform density as kermel fumction. Define K(x) = ¥
if |x| < 1, and K(x) = O otherwise. Then, following an argument of
Bhattacharyya and Roussas (1969), 'r(fn) may be expressed as a linear

combination of order statistics,
T(f) = (chn)-l > lk(m:u)'zi(,,,)(zcn - 1% - %D,

vhere ] ,. devotes summation over all 1 S 1 S J S n such that X, - x|
$2¢c . If f has a bounded second derivative which is a continuous Ly(==, =)
function, and 1f ¢ = An"1/3, then by results of Cheng and Serfiing (1979)

the conditions of Theorems 1 and 2 hold and we have r(fn) - T(f) S

~¥ ¥ ¥

0(n “(log n)

) as vel). as n'[T(£) - T(£)] +, N(O, 4[£(x) [£(x) - T(0))%ax. D
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EXAMPLE 2. The triangular function as a kemel function. Define
K(x) »1-x1f 0 sxs1,=1+xif -1 < x s 0, = O othexwise. It can
be shown that T(fn) may be represented as a polynomial function of the
differences |x1 - le. Also, the same assertions of a.s. convergence and

asymptotic normality as in the preceding example apply. O
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